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Abstract--Thermal stability and microstructure of nanocrystalline alloys are determined 
by the interaction of the chemical components with the topological defects. An important aspect 
of this interaction is the reduction of the grain boundary specific energy by grain boundary 
segregation. Based on very general thermodynamic considerations, this work presents a concept 
for the stabilization of nanocrystalline solids against grain-growth by grain boundary segrega- 
tion. It is predicted that, for alloy systems with a large heat of segregation, the poly- or 
nanocrystalline alloy is in a metastable state for a particular grain-size which decreases with 
increasing concentration of the solute element. In the metastable state, the specific grain boundary 
energy is zero. A narrowing of the glass-forming region in glass-forming alloy systems is predicted 
when the metastable polycrystal can form. 

1. INTRODUCTION 

The growing interest in nanostructured solids has mostly been focused on pure metals and 
on ceramic systems (for a recent review see (I)). Pure metals are suited as simple model systems 
for studying the physical properties related to the high density of interfaces in nanostructured 
solids in terms of interface atomic structure and basic thermodynamics of metastable systems. 
Ceramics offer good perspectives for applications where net-shape forming or ductility is required. 

Nanocrystalline alloys represent an additional group of nanostructured solids. Because in 
these solids the density of topological defects is comparable to the density of alloy atoms, they 
promise to exhibit exciting new physical effects. The interaction between topological defects and 
alloy atoms should profoundly affect the relative stability of the various alloy phases. In addition, 
by going from a pure element or a stoichiometric compound to an alloy, an additional degree of 
freedom for the nanometer scale spacial structuring of the solid is introduced. The characteristic 
atomic slructures involved when alloy atoms interact with grain boundaries emerge as essential 
structural elements when the grain size is reduced to the nanometer scale. 

Figure 1 is a schematic representation of several different microstructures of nanostructured 
alloys. The alloys may be mixtures of crystals of different phases, which alloy at the grain 
boundaries (left). Nanocrystalline Fe-Ag alloys have been observed to consist of a fine dispersion 
of pure elemental crystals of Fe and Ag (2). Fe and Ag are not miscible in either the solid or the 
liquid state. Alternatively, the microstructure of nanostructured alloys may be dominated by 
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Figure 1. Schematic representation of different nanostructured alloy microstructures. The 
open and full circles represent two alloy components. Left: mixture of two phases. Center: 

extended gradients of density or composition. Right: grain-boundary segregation. 

extended gradients of atomic density or composition perpendicular to each grain boundary 
(center). This has been observed in nanostructured amorphous Ti-Pd alloys (3). A particularly 
interesting type of nanostructured alloys is characterized by a strong tendency for grain boundary 
segregation, i.e. for an enrichment of the solute at the grain boundaries. In these alloys, the 
microstructure is such that one component is preferentially located in a segregation layer at the 
grain boundaries between crystals of the other component (righ0. Arecent structural investigation 
of nanosa'uctured Y-Fe alloys (4) demonstrates that the majority of Fe is segregated to the grain 
boundaries between nearly pure Y nanometer crystals. 

There are two essential points of interest in nanocrystalline alloys involving grain boundary 
segregation. First, since the density of grain boundaries is high, these solids provide novel 
opportunities for experimental studies of grain boundary segregation. Such studies are difficult in 
conventional coarse-grained polycrystals because of the low concentration of segregation sites. 
Second, segregation may be a means of stabilizing the grain size in nanocrystalline solids. 
According to the Gibbs adsorption equation (5, 6), the specific grain boundary energy ff is reduced 
by segregation. If it was possible to reduce t~ to a zero or negative value, then there would be no 
driving force for grain growth in such a solid. This would be an important step both towards 
application of nanostructured materials and towards fundamental studies of their properties at 
elevated temperatures. In fact. the stabilizing influence of grain boundary segregation has been 
speculated upon by several authors in the discussion of experimental results on nanostructured 
alloys (21,4). Chapters 2-4 of the present work summarize results of a recent theoretical treatment 
of this question (7). 

2. THERMODYNAMICS OFALLOY POLYCRYSTALS 

The general thermodynamic treatment of multicomponent systems containing an interface 
has been developed by Gibbs (5). In the present work, we shall follow Cahn (6) in applying Gibbs 
results, in a more modern notation, to grain boundaries. We neglect the dependence of grain 
boundary properties on crystal orientation and on curvature. Cahn defines layers surrounding each 
grain boundary, which are thick enough so that their outer bounds are everywhere located in 
regions where the crystal lattice is homogeneous and unaffected by the presence of the grain 
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boundary. The matter outside the layers is termed the matrix phase. The specific layer content of 
any extensive thermodynamic quantity, [Y], can then be expressed as a function of the overall 
value of the quantity in the polyerystal, Y, and the respective overall value in the matrix phase 
outside the layer bounds, yM: 

y _ y M  Y = YM +A[Y] [1] [Y]:= A ; 

The thermodynamic properties yM of the matrix phase are those of an interface-free crystal with 
the same P, T, and number of atoms of component i, NMi, as in the matrix phase. 

The layer concept, dividing the polycrystal into physically existing subsystems, is useful 
when discussing microscopic models (see chapter 4). In contrast, most experimental and certain 
theoretical (see e.g. (8)) results are given in terms of excess quantities. To determine the specific 
excess at the grain boundary, {Y}, of quantity Y, we compare the polycrystal to a homogeneous 
single crystal (the reference phase) with the same intensive properties (P,T,).ti,concentrations) as 
the matrix phase, and with the same molar quantity of element ' 1' as the polycrystal. Hence, excess 
properties are defined, and can be determined from layer and matrix properties, by 

{Y} : -  y _  yREF yM 
A = [Y] - N---~I [NI] [2] 

The total energy of a polycrystal is (6) 

E = TS - PV + TJIiN i + o'A [3] 

where (~ is the specific grain boundary energy and A is the total interface area. All other symbols 
have their usual meanings. Gibbs shows that, in thermodynamic equilibrium, temperature and the 
chemical potentials of all components are constant everywhere within the system. 

Equation [3], together with the definition of the Gibbs free energy, G, yields a total 
polycrystal value for G 

G = T.//iNi + o'A 

with matrix and specific layer Gibbs free energies 

[4] 

G M = E//i NM • [G]= 5".Pi[Ni]+ o" 

The total differential of the Gibbs free energy G of a polycrystal is 

[5] 

dG = -SdT + VdP + Y-i ]JidNi + odA [6] 

A polycrystal which undergoes grain-growth at elevated temperature is considered here as 
a closed system (dNi = 0, dQ ~: 0) where crystal lattice and grain boundaries are in thermodynamic 
equilibrium with respect to concentration of the solute atoms. The driving force for grain growth 
is the variation of Gibbs free energy of the polycrystalline closed system when the total grain 
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boundary area is reversibly varied at constant temperature and pressure. From equation [6], it is 
seen that this variation is dG = odA, and that the specific grain boundary energy o is therefore 
governing the thermal stability of a polycrystal with respect to grain growth. 

We shall now derive an expression which allows a direct evaluation of o in an alloy 
polycrystal. To do so, we consider the change of G when solute is alloyed, at constant P,T, and A, 
into a pure component '  1' polycrystal. From equation [4], the Gibbs free energy Go of the pure 
component ' 1' polycrystal is 

G o =/llONl + a°A [7] 

where IJ.Ol and t o  are the chemical potential of component 1 in its reference state and the specific 
grain boundary energy in pure component'  1', respectively, at pressure P and temperature T. 

The change in Gibbs free energy upon alloying, at constant P,T,A is of the form 

AG = ~ t ° & N i  + M-I mix - TAS mix [8] 

which yields for polycrystal and matrix phase 

and 

G = ~/.ti0Ni + AH mix - TAS mix + O°A [9] 

G M = ~.//ONM + AH mi~M _ TASmix,M [10] 

The polycrystal quantities AG mix, AHmix and AS mix account for a combination of crystal lattice 
and layer properties; their values will in general be different from the corresponding single crystal 
values. Applying the definition of layer quantities [1] to determine [G] from [9] and [10], and 
comparing to [5], we obtain an equation for the specific grain boundary energy in an alloy: 

or= o "0 + [AHmix] - T[Asmix] - X(Pi- /10)[Ni]  [11] 

A useful form of this expression is obtained for the special case of a binary alloy where the 
matrix is a dilute solid solution of solute 13 in solvent a. In this case, integral molar heats of solution 
in matrix and grain boundary layer can be defined by 

• A l . . l m i x , M  [AHmix] 
A u s o I  . _  ~ "  • A L I s o l  . - -  

, "~'//inGB'- zan3 in M ' -  N ~  [N# ] [12] 

and the chemical potentials are determined by the matrix composition: 

/ ~ a = #  0 + RTIn ; # # = # ~  + A H ~  M + RTIB [13] 

Inserting [ 12] and [ 13] into [ I 1 ] yields an expression for o in the binary alloy with a dilute matrix: 
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o.~iilute M _ sol  
- [14] 

Applying [2], we obtain the corresponding result in terms of excess quantities: 

O•lilutc M I" N l/AHSOl All'sol '~ 
P,T) = ~(P,T) - ~. #J'~ flinM - ~"#inGB/ 

where 

[15] 

{AH mix } 
"- [161 AHsol 

#inGB "- IN#} 

In thermodynamic equilibrium, solute concentrations in matrix and layer or excess sites are 
related by an adsorption isotherm, the form of which depends on the microscopic details of the 
segregation process (see (9)). In the majority of those alloys which have a strong tendency for 
segregation, the excess of solute is experimentally observed to tend asymptotically towards a 
constant upper limit, the saturation coverage {Nl]}sat, as the solute concentration in the crystal 
lattice is increased at constant temperature and pressure, or as the temperature is decreased at 
constant solute concentration in the crystal lattice and constant pressure. Consequently, in a coarse- 
grained polycrystalline closed system, where the amount of solute exceeds the amount of 
segregation sites (A{Nl~}sat<<Ni3), the solute concentrations in lattice and grain boundaries are 
independent of the temperature in the low T limit. Hence, the entropy of mixing contribution to 
6, represented by the last term on the right hand side of [15], vanishes with a linear temperature 
dependence at low T (RT << AHseg). As solute enrichment at grain boundaries is generally 
restricted to a layer with a width of the order of one atomic diameter, the absolute value of the 
excess entropy of mixing can be estimated (7) as I{AS mix }1 <= { NI3} satR In2. Hence, { ASmix } will 
contribute signifantly to 6 only at elevated temperatures. The specific grain boundary energy in 
the coarse-grained, low temperature limit then takes the simple form 

O-= oO_ {N3} sat AHseg + RTI n [17] 

with the heat of segregation 

It is seen that, if the atomic interactions in an alloy are such that the second term on the right 
hand side of [17] is larger than the flu'st, then the very general thermodynamic considerations of 
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the present chapter indicate that the specific grain boundary energy of the coarse-grained alloy 
polycrystal must be negative, at least for not too high temperatures. In this case, according to [6], 
a polycrystalline closed system will tend to reduce its Gibbs free energy by spontaneously 
increasing A. If solute is enriched at the grain boundary, and if the lattice is stable with respect to 
spinodal decomposition (dlxlydx p > 0), then lap will decrease as the lattice concentration dimin- 
ishes with increasing A, and, according to the Gibbs adsorption equation, o will increase. I fA is 
sufficiently large, there will be considerably more segregation sites than there are solute atoms, so 
that boundary and lattice are dilute solutions. For this case, o has been shown (10) to vary as 

= cr ° - RT{N#} [18] 

i.e. in the limit of large A, o tends towards the positive value o o. For positive a,  the polycrystal 
tends to spontaneously diminish Aby grain-growth. At an intermediate value of A, a equals zero, 
and, according to [6], the polycrystal is stable with respect to variation of A. 

Hence, classical thermodynamics predict that, if the heat of segregation of an alloy system 
is sufficiently large, and if the overall solute concentration is not too small, then there exists a state 
for which the polycrystal is stable with respect to variations of its grain boundary area and of its 
grain-size. In general, this state will not correspond to the absolute minimum in G for the system; 
instead, the polycrystal is in a metastable state. 

The critical assumptions used in the derivation of this result are fu'st that segregation is of 
the saturation type, with a finite numbe~ density of segregation sites, and second that the number 
of solute and solvent atoms is conserved, i.e. the formation of phases with a lower la13 than the lattice 
solid solution (pure crystalline I~, an intermetallic phase or the alloy glass) must be suppressed, e.g. 
through a nucleation barrier. 

3. INTERACTIONS BETWEEN ALLOY ATOMS AND GRAIN BOUNDARIES 

The heat of solution in the crystal lattice can essentially be expressed as the sum of an 
electronic contribution and an elastic contribution (see e.g. (11)). The elastic contribution, due to 
the size-mismatch of the solute in the solvent lattice, is always positive and ranges, for metallic 
elements, to approximately 200kJ/mol (11). The electronic contribution, due to charge exchange 
between solute and solvent, may be of either positive or negative sign, and may reach absolute 
values up to 300kJ/mol for transition metal alloys (11). 

The heat of solution in the grain boundary segregation sites may also be expressed as the sum 
of separate contributions (I 2). In addition to the elastic and electronic terms, the sum includes a 
'defect energy' term, which accounts for the fact that the element with the lower defect energy 
tends to be enriched at the grain boundary. This term has been stated to be proportional to the 
difference in the specific grain boundary energies in the pure solvent and solute polycrystals 
(12,13). In a treatment of surface-segregation, Miedema (14) proposes a defect term which 
depends on the difference of the pure solute and solvent specific surface energies, but which also 
accounts for the different area fractions of the interface occupied by solvent and solute atoms with 
a large size difference. Since there seems to be no generally applicable topological model of grain 
boundary segregation, it is difficult to transfer such considerations to grain boundary segregation. 
A similar problem arises when treating electronic interaction energies in the grain boundary. 
Qualitatively, the electronic contributions to the integral heats of solution differ because the total 
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coordination number is reduced in the grain boundary, and because, if {Np} > 0, then the number 
of solvent nearest neighbors to a solute atom in the grain boundary is reduced as compared to the 
lattice value (15). Hence, defect and electronic contributions to the heat of segregation ---i.e. to the 
difference between the integral heats of solution in crystal lattice and grain boundary--are of either 
positive or negative sign, depending on the alloy system. 

On the other hand, because at least part of the elastic strain is released when solute is 
transferred from lattice to boundary sites, the elastic contribution to the heat of solution in the grain 
boundary is generally considerably smaller than the corresponding lattice term, and elastic 
interactions therefore contribute a positive term to the heat of segregation. It has been stated that 
for incoherent grain boundaries, in particular, it is a good approximation to set the elastic strain 
energy due to segregated solute equal to zero (16). A high density of such incoherent high angle 
grain boundaries is present in nanocrystalline solids prepared by consolidating nm-sized crystals 
in random orientations (1). Hence, we may expect that heats of segregation in nanocrystalline 
solids may range up to a considerable fraction of the elastic energy of interaction in the crystal 
lattice, that is up to about I00 kJ/mol. Indeed, a value of AHseg = 100 kJ/mol is experimentally 
found for Bi-segregation in Cu polycrystals (12). 

The molar number of atomic sites per unit area in a layer of thickness f~ I/'3 (f~ is the average 
atomic volume, f21f3 is a measure of the distance between dense-packed atomic planes) is 
1/(~2/3NA), so the specific excess of solute in the saturated grain boundary, {NI3} sat. can be 
correlated to f2 and to the number of monolayers of solute in the saturated grain boundary, Z, by 
the relation 

:= {N/i} sat ~2/3N A [19] Z 

(NAiS Avogadro's number). For a typicalatomic volumeof a transition metal atom, f2 = 1.2" 
10-29m 3, and for saturation at Z = I monolayer, equation [19] gives {NI3} sat = 3.2* 10-5 mol/m2. 
With AHseg = 100 kJ/mol, the reduction in (~ predicted by equation [ 17] is 3J/m2. Since c o in pure 
metals is of the order of 1 J/m2 or less (17), it is seen that equation [ 17] predicts large negative values 
of (r for suitable alloy systems, e.g. those with a large atomic size mismatch. 

4. MICROSCOPIC MODEL 

An explicit expression for G is obtained when the formalism presented in chapter 2 is applied 
to McLean's microscopic model for grain boundary segregation (18,7). The model considers grain 
boundary and crystal lattice as random substitutional solid solutions with fixed numbers of sites, 
which are in thermodynamic equilibrium with each other. Concentration-independent interaction 
energies are attributed to solute atoms on lattice and grain boundary sites. In the present formalism, 
the total Gibbs free energy of the polycrystal, G PX, is then: 

NM^Hsol NGBAHSOl G Px = Ntx.t/0a + N/~,t/~ + o'0A + /7 '-' //ina + fl //inGB 

( ( N ~  MMM ) ( NM ) ( NGB "~ (NGB~ 
NGBIn | fl | +  +N I. + ) [201 
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where N, N M, NGB are the overall number of atoms in the polycrystal, in the crystal lattice, and 
in the grain boundary, respectively, and NMi, NGB i denote the amount of component i in lattice and 
grain boundary, respectively. The concentrations in crystal lattice and grain boundary are governed 
by the Langmuir-McLean adsorption isotherm (18), which reads 

N GB N~ I (AHSeg "~ 
[21] 

for a dilute solution in the crystal lattice. 
Solving equation [21 ] for NI3 GB, and inserting in equation [20], an analytical expression for 

G as a function of P,T, Na,NI3,A is obtained. We shall discuss the results here as an exemplary 
illustration of the thermodynamic properties of nanostructured alloys. For the rest of the 
discussion, we shall express A in terms of a more illustrative parameter, the grain size D, related 
to A by A -- 3V/D (however, since grain boundaries need not be planar, D is only a 'good' 
thermodynamic parameter in an idealized polycrystal with equiaxed grains and planar grain 
boundaries). The results given below were computed for the following parameters: {N] sat as 
above; AHsoll3 in GB = 0; AHSOll~ in cx = AHseg = 100 kJ/mol; 60 = 1J/m2; ~t0 i = 0. This model solid 
corresponds to the case of vanishing electronic contributions to the heats of solution in lattice and 
grain boundary, and to a vanishing 'defect contribution' to AHseg. 

I / /  
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F l ' l / /  

2 ~ ! !  ~ T = 6 O O K  

L I I I I 

0 0.1 0.2 0.3 0.4 0.5 
Xp 

Figure 2. Variation of molar Gibbs free energy G with overall solute molar fraction xp for a 
binary solid solution single crystal (dotted line marked 'X') and for alloy polycrystals with 
grain-sizes 2, 4, 10, 20, and 40 nm (full lines) at fixed P and T. The dotted line marked 'P' 
represents the Gibbs free energy of the metastable polycrystal, equation [22]. See text for 

parameters of the alloy system. 
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The variation of GPX with D and x13 is illustrated in Figure 2. It is seen that G PX assumes the 
value oOA for xp-- 0 and varies slowly with x13 as long as x13 < NGB/N. In this regime, all solute 
is located in the grain boundary segregation sites. When xl~ > NGB/N, GPX increases in parallel with 
the Gibbs free energy of the solid solution single crystal, G X. In this regime, the segregation sites 
are occupied and additional solute is located in the energetically unfavorable lattice sites. For each 
grain size, there is a particular solute concentration above which the polycrystal has a lower Gibbs 
free energy than the single crystal. Furthermore, the individual G PX curves are seen to intersect 
each other. The result is that, for each solute concentration, there exists a particular grain size for 
which GPX is minimized. This grain size corresponds to the metastable state of the polycrystal. 
For large AHseg, the Gibbs free energy G P of the metastable polycrystal G P increases linearly with 
xp (7): 

G p = NauOa + Nflu ~ + Nfl 0"0 {N# }sat [22] 

This equation is represented by the dashed line marked 'P' in Figure 2; it is seen to form the 
envelope of all the G PX curves which are generated when all possible values of D (or A) are 
considered. 

Figures 3 and 4 display the variation of GPX and cr with D (or A) for the same parameters 
as in Figure 2. The value of G PX approaches the single crystal value for large D; it reaches a 
minimum where N GB = NI~. At this grain-size, the polycrystal is stable with respect to variation of 
D. c~ (Figure 4) is negative for larger D, and positive for smaller D. 
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5. COMPARISON TO THE ALLOY GLASS 

When experimental methods capable of achieving a high excess Gibbs free energy (such as 
rapid solidification, high-energy ball milling, or in situ consolidation of inert gas condensed nm 
particles) are applied to glass forming alloy systems, the glass is generally observed to form inside 
a certain interval of compositions, while poly- or nanoerystalline phases are formed for compo- 
sitions outside this interval. When comparing the Gibbs free energy of the metastable polycrystal 
to that of the undercooled liquid alloy, or the glass, one is interested in the relative magnitudes of 
the quantity co/{ N}sat = oOI)2/3NA/Z in equation [22] on the one hand, and of the corresponding 
excess quantities in the undercooled melt on the other hand. 

Empirically, oO is found to scale with the solid-liquid interfacial energy "ltSL as "ySL/o'o = 0.3 
(17), and 7 sL scales with the heat of fusion AHf as ~SL~2/3NA ~- 0.5AHf (19), hence O0~2/3NA = 
aAHL with a = 1.7. In fact, a determination of the parameters a for metals from data for co in (I 7) 
yields an average value of a = 1.3. Hence, the excess Gibbs free energies of solid solution single 
crystal, AGX, alloy glass, AG L, and metastable polycrystal, AG P for a vanishing electronic 
contribution to the enthalpies of solution, can be summarized by the following equations: 

~,T , T,sol elastic ,T,A c~mix (a) AG x = ' "~ ' -~# i~a  - l,,,, 

(b )  A G  L = N(AI-I  f - T A S  f ) -  T A S  mix [23] 

(5" 0 t~ f 
(c) AGP = N3 {N3}sat = N 3 - z A H a  ; Ct = 1.3 

Here AGY denotes the excess in Gibbs free energy of the matter in the system in state 'Y' as 
compared to the same amount of matter in its reference state, i.e. in the form of pure stable 
crystalline phases at T and P. AHf and ASf are weighted sums over the molar enthalpies and 
entropies of fusion, respectively, of the pure alloy components. 

The Gibbs free energies given by equations [23] are graphically illustrated for two different 
temperatures in Figure 5. The parameters for Gx and GP at T = 600K are the same as for Figure 
1. For consistency of the parameters, a = 1.3, and AS m at Tm equals the gas constant R. AHf and 
ASf for temperatures below Tm are obtained according to (20). oo is 1J/m2 at T = 600K, with a 
realistic (17) temperature coefficient of-0.2mJ/(m2K). The metastable polycrystal is seen to be 
thermodynamically more stable than the undercooled melt up to considerably higher solute 
concentrations than the solid solution single crystal. Hence, the glass forming region is expected 
to be narrowed when the metastable polycrystal can form. 

In an attempt to check the predictions of the theory, a structural analysis of Y-Fe alloys with 
various compositions, prepared by in situ consolidation of inert gas condensed, nm sized particles, 
is presently performed (4). The alloy system features a large elastic and a small electronic 
contribution to the enthalpy of solution in the lattice. The grain size of these alloys is found to 
decrease with increasing solute content; the alloys are amorphous at high solute concentrations 
only. Hence, it seems not too unrealistic to anticipate that the metastable polycrystal and the glass 
may turn out to be competing states in certain experimental situations. 
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Figure 5. Variation of the excess Gibbs free energy G with overall solute molar fraction x13 
for the solid solution single crystal (X), the metastable polycrystal (P), and the 

undercooled melt (L) at T = 600K (solid lines) and at T = 900 (dotted lines). 
See text for parameters of the alloy system. 
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